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In this article, a new form of data assimilation (DA) method namely multiple imputation
particle filter with smooth variable structure filter (MIPF–SVSF) is proposed for river state
estimation. This method is introduced to perform estimation during missing observation by
presenting new sets of data. The contribution of this work is to overcome the missing
observation, and at the same time improve the estimation performance. The convergence
analysis of the MIPF–SVF is discussed and shows that the method depends on the
number of particles and imputations. However, the number of particles and imputations is
influenced by the error difference in the likelihood function. By bounding the error, the ability
of the method can be improved and the number of particles and computational time are
reduced. The comparison between the proposed method with EKF during complete data
and multiple imputation particle filter shows the effectiveness of the MIPF–SVSF. The
percentage improvement of the proposed method compared to MIPF in terms of root
mean square error is between 12 and 13.5%, standard deviation is between 14 and 15%,
mean absolute error is between 2 and 7%, and the computational error is reduced
between 73 and 90% of the length of time required to perform the estimation process.
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INTRODUCTION

The prediction of the river state is important in the hydrology, water resource management, and
ecosystem rehabilitation. The knowledge of river flow characteristics is useful for flood forecasting,
reservoir operations, and watershed modeling (Sichangi et al., 2018). In flood forecasting, the
predicted state is use to produce alerts of the incoming flood to prevent damages to human life,
properties and environment (Jain et al., 2018). Besides that, the information from the state estimation
is used in controlling the outflows of reservoir during low flows day of river and also rapid flows
resulting from dam-break that may cause catastrophy to the environment and massive losses to life
and property (Adnan et al., 2017), (Cao et al., 2019). The water flow can also be used in watershed
modeling that is used to manage the water by channeling the water from any sources into a single
larger body of water such as a larger river (Aswathy et al., 2016). The management and planning of
the water source is important for the increasing of the water demand in the next few years due to the
increasing population growth, urbanization, industrial use, irrigation needs, and water-intensive
agriculture (Tinka et al., 2013). This includes the planning of the water projects, irrigation systems,
hydropower system, and optimized utilization of water resources (Adnan et al., 2017). The
information of the river discharge (flow) is necessary in the management procedure and the
variation of the hydrologic cycle is related to the climate change, land use, and water use (Bjerklie
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et al., 2018). The river discharge is one of the climate variables by
the Global Climate Observing System (Tarpanelli et al., 2019).
The prediction of the variables that represent the water flow
regime helps in the ecosystem rehabilitation program that seeks
to safeguard or restore indigenous ecosystems by manipulating
the river flow (Blythe and Schmidt, 2018). The estimation of the
river state can be carried out using the data assimilation (DA)
method. The DA method is a mathematical technique that
combines observation data with the system model and creates
the updated model state while maintaining the parameter of the
model (Li et al., 2014). The updated model state is defined as the
probability density function (pdf) that is based on Bayes’ theorem
and known as the new posterior pdf (Smith et al., 2013). The new
state is acquired whenever there are new observations and uses
them to initiate the next model forecast as reported in a study (He
et al., 2014). The DA method is desired to optimally and
consistently estimated, even if the noisy readings arrive
sequentially in time (Liu and Gupta, 2007). The DA technique
is accessible in two classes namely, variational and sequential
(Gadsden et al., 2014).

The variational method is based on the optimum theory of
control. Optimization is carried out on the associated parameters
by minimizing the cost function that influences the model to
misfit the information. The examples of this technique are
variational data assimilation (VAR), evolutionary data
assimilation (EDA), and maximum likelihood ensemble filter
(MLEF) (Abaza et al., 2014). The VAR method makes
estimates by minimizing the cost function which measures the
difference between the model estimate, the observation, and the
associated uncertainties. The gradient-based optimization
algorithm is used to adjust the model states and parameters of
the model and receive the appropriate estimate for the
measurement (Kim et al., 2014). Besides that, the EDA utilizes
a multi-objective evolutionary strategy to continually develop the
set of model states and parameters where the model error and
penalty function minimization for each assimilation time step is
determined adaptively. This is done to enhance the convergence
of parameters and lead to excellent estimation outcomes (Bertino
et al., 2003; Solonen et al., 2014). Another type of variational
method is the MLEF, which combines the VAR and the ensemble
Kalman filter (EnKF). This method maintains the strength of
both method and capable to handle nonlinear model dynamics as
well as nonlinear observation. However, in some cases the
performance of the MLEF may deteriorate due to consistency
of the observation (Rafieeinasab et al., 2014). Besides that, the
sequential methods use a probabilistic framework and estimate
the whole system state sequentially by propagating information
only forward in time. This method does not require an adjoint
model and makes it easy to adapt with the model (Rigatos, 2012).
The sequential-based technique is frequently used in estimation
compared to the variational method, since the prior state is
updated with the new observation available and the process is
performed sequentially (Arulampalam et al., 2002). The examples
of this method are extended Kalman filter in (Li et al., 2014),
ensemble Kalman filter (EnKF) in (Rafieeinasab et al., 2014),
unscented Kalman filter (UKF) (Pintelon et al., 2017), cubature
Kalman filter (Liu and Gupta, 2007), and particle filter (PF)

(Ugryumova et al., 2015). The EKF is commonly used
sequentially DA method due to easy implementation, but
depends strongly on the accuracy of the system linearization
that is performed using Taylor series expansion (Li et al., 2014).
This technique shows excellent efficiency in low nonlinearity and
diverges in higher nonlinear cases (Zhang et al., 2015). For a
highly nonlinear system, the estimation can be carried out using
the EnKF that offers estimation without linearization
(Rafieeinasab et al., 2014). This method involves a large
sample size to represent the number of samples or ensemble
members for precise estimation that can be produced with Monte
Carlo method, Latin hypercube sampling, and moment equation
(Kang, 2013; Gadsden et al., 2014; Wang et al., 2017). The
samples’ mean and covariance are used to perform updating
in the estimation process (Rafieeinasab et al., 2014). However, the
large sample size may cause for computational demand (Gadsden
et al., 2014). Another form of EnKF is the ensemble square root
filter (EnSRF) that does not require the observation to be
perturbed as the standard implementation of the EnKF. The
algorithm of this method has been demonstrated to be as fast as
the EnKF and more precise for a specified ensemble size than
EnKF (Liu et al., 2017).

The UKF is more appropriate for application for low
computational and high accuracy. This method includes the
sigma points derived from the unscented transformations
(Ding et al., 2015). The sigma points are propagated through
the system model and the related weight factor during the
estimation process and produce new sets of sigma points,
which are subsequently used in the calculation of the projected
states (Pintelon et al., 2017). However, this method relies on the
precise of prior noise distribution. Wrong prior value can lead to
large estimation errors or divergence of errors (Mao et al., 2017).
Another type of sequential DA method is the PF, which does not
involve system linearization and includes a number of particles
during prediction (Hu et al., 2012). Each particle represents the
estimated state with its associated likelihood that is determined
using the residual between the simulated output and observation
(Solonen et al., 2014). Large numbers of particles provide the
chance of good estimation, but the computational time will
increase. Another factor to consider when using PF is the
issue of degeneration and dimensionality curse that can
influence the estimation (Ugryumova et al., 2015). All the
abovementioned DA methods were implemented in the river
state estimation study. The modification of the methods may
improve the performance of the method and the result obtained.
In a study (Cao et al., 2019), the particle filter is modified by
considering the system condition and the particle weighting
procedure. The modification has improved the estimation
result. Besides that, the modification can also be made by
combining two or more methods such as the combination of
the PF with smooth variable structure filter (SVSF). The SVSF
produce estimated state and state error covariance, which is used
to formulate the proposal distribution for the PF to generate
particles (Ogundijo et al., 2016). The SVSF is robust to modeling
errors and uncertainties (Feng et al., 2011). This method produces
better estimated result than the PF only. Besides that, the SVSF
also combined with the cubature Kalman filter (CKF). The CKF
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offers the nearest known approximation to the Bayesian filter in
the sense of maintaining second-order information contained in
the Gaussian assumption of noisy measurements. This method
also does not need Jacobians and therefore applies to a wide range
of issues. The accuracy of CKF and the stability of the SVSF
ensure good estimation results (Liu and Gupta, 2007).

In this work, the estimated river system flow and stage, and
also the velocity of the sensor are inspired from (Tinka et al.,
2013) and (Zhang et al., 2014). These values can be obtained using
the previously mentioned DA method. However, the missing
observation data can be problematic that will affect the estimation
process (Ismail and Jalaludin, 2016). The missing data can be
handled using modern method or traditional method. The
modern method is represented by the maximum likelihood
and multiple imputations, while the traditional techniques are
deletion and mean imputation techniques (Gadsden et al., 2012).
It is noted that the multiple imputation particle filter (MIPF) is
introduced to deal with this problem by randomly drawn values
known as imputations to replace the missing information and
then uses the particle filter to predict nonlinear state as reported
in (Habibi, 2007). However, the addition of the new data burdens
the estimation process. Therefore, the SVSF is introduced to
bound the error difference and assist in the estimation process.

In this article, the convergence analysis of the MIPF–SVSF in
estimating the river flow and stage from the initial condition is
presented. The article is constructed as follows: the systemmodel,
observation model, and the state space model for estimation
process are presented in Modelling the Marine River Flow.
Problem Formulation briefly explains the effect of the missing
observation during estimation. Then, the proposed algorithm for
estimation with missing data is described in the Proposed Data
Assimilation Approach. The convergence analysis is presented in
Convergence Analysis that includes almost sure convergence and
convergence of the mean square error. In Results and Discussion,
the details on estimation process and numerical simulations are
discussed and finally conclusions are presented in Conclusion.

MODELING THE MARINE RIVER FLOW

The river flow model can be represented by one or two-
dimensional Saint–Venant equations (Tinka et al., 2013)
depending on the characteristics of the water flow. If the flow
is in one-dimensional, the 1-D Saint–Venant equations is
considered. However, if the flow is not one-dimensional,
which may happen in flood plains or in large rivers, the 2-D
Saint–Venants equation is more suitable to be applied (Litrico
and Fromion, 2009). Besides that, the representation of the
observation is referring to the movement of the sensor since
the Lagrangian sensor is used in this research (Tinka et al., 2013).
The combination of the system model and the observation is
represented by the state-space model and used in the DAmethod.

System Model and Observation Model
By considering one-dimensional flow of the river without any
uncontrolled release of water flow, the system model is
represented by 1-D Saint–Venant equations. These two

equations coupled are first order hyperbolic partial differential
equations (pde) derived from the conservation of mass and
momentum. By considering a prismatic channel that have
same cross-section throughout the length of channel with no
lateral inflow, the equation is represented as (Tinka et al., 2013).

T
zH

zt
+ zQ

zx
� 0 (1)

zQ

zt
+ z

zx
(Q2

A
) + z

zx
(ghcA) � gA(So − Sf) (2)

Sf � m2Q2P
4
3

A
4
3

(3)

where A is the cross section, Q is the discharge or flow, L is the
river reach, T is the free surface width, D is the hydraulic depth, Sf
is the friction slope, So is the bed slope, Fg is the gravitational
acceleration, hc is the distance of the centroid of the cross section
from the free surface, P is the wetted perimeter, and m is the
Manning roughness coefficient.

Observation Model
The system observation is represented by the velocity of the flow
as measured by the sensors. The relation between the velocity of
the sensor and the flow at the corresponding cross-section relies
on assumptions made about the profile of the water velocity that
considered as the observation model. The profile is the
combination of the average velocity in the transverse and
vertical direction. In transverse direction, the surface velocity
profile is assumed to be quartic, and the von Karman logarithmic
profile is assumed in the vertical direction. By considering a
particle moving at a distance y from the center line and z from the
surface, the relation between the particle’s velocity and the water
flow is represented by the following equations (Tinka et al., 2013)

vp(y, z) � FT(y)Fv(z)Q
A

(4)

with

FT(y) � Aq + Bq(2y
w
)2 + Cq(2y

w
)4 (5)

Aq + Bq + Cq � 0 (6)

Aq + Bq

3
+ Cq

5
� 1 (7)

Fv(z) � 1 + (0.1
Kv
)(1 + log(z

d
)) (8)

where w is the channel width; d is the water depth; Aq, Bq, and Cq

are constants; and Kv is the Von Karman log constant.

State Space Representation
During estimation process, the system and observation equation
is represented as a state-space model that comprises of the
parameters of the model, observation, system noise, and
measurement noise. The channel is discretized into n cells
with each cell and has same length. In the nonlinear system
state estimation, the initial conditions and the boundary
conditions of the system are required as the inputs. The
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uncertainties of the model and also the inaccuracies of the inputs
measurements are considered as the system noise vt. While the
measurement noise, εt represent the errors and uncertainties of
the measurements. Both noises are represented by the zero mean
Gaussian error. The state-space model for the estimation is
described as follows

Xt+1 � f(Xt, ut, υt) (9)

Wt � g(Xt, εt, t) (10)

where Xt is the state vector at time t

Xt � (Qt
2, . . . , Q

t
nc
, Ht

1, . . . , H
t
nc−1)T (11)

and the input ut contains the boundary conditions, i.e., the
upstream flow and downstream stage.

ut � (Qt
1, H

t
nc
)T (12)

where Qt
i and Ht

i are the flow and stage at cell i at time t,
respectively, and nc is number of cells used for the discretization
of the channel. Since the system is observed by nk sensors, Eq. 10
can be reformulated into

Wt � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
g1(Xt, εt,1, t)

..

.

gnk(Xt, εt,nk, t)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ⎛⎜⎜⎜⎜⎜⎜⎜⎝

Wt,1

..

.

Wt,nk

⎞⎟⎟⎟⎟⎟⎟⎟⎠ for k � 1 . . . nk (13)

where Wt denotes the noisy observation of the state Xt such that
the εt,k is an independent and identically distributed (i.i.d.)
measurement noise and gk is the measurement transformation
for sensor k.

PROBLEM FORMULATION

The Bayesian theorem used by the DA method is represented as
follows (Crisan and Doucet, 2002).

p(Xt|W1: t) � p(Wt|Xt)p(Xt|W1: t−1)
p(Wt|W1: t−1) (14)

where Xt is the system state at time t, Wt is the observation at
time t, p(Xt|W1: t) is the posterior probability of state,X at time t
given observation, W from time one to time t, p(Wt|Xt) is the
likelihood function of state X at time t given observation W at
time t, p(Xt|W1: t−1) is the prior probability of state X at time t
given observationW from time one to time t-1, p(Wt|W1: t−1) is
the normalizing constant.

In this theorem, the observation data Wt is used to adjust the
likelihood function. The adjusted likelihood function is used to
modify the prior probability to obtain the desired posterior
probability that represents the estimated state. The
normalizing constant in this theorem is represented as
(Ugryumova et al., 2015).

p(Wt|W1: t−1) � ∫p(Wt|Xt)p(Xt|W1: t−1)dXt (15)

where all parameters are defined in Eq. 14. Based on Eqs 14, 15,
the posterior probability is very much depending on the
likelihood function p(Wt|Xt). This function is represented as
follow (Mukherjee and Sengupta, 2010)

p(Wt|Xt) � p(Wt − g(Xt)) (16)

where Wt and Xt are defined in Eq. 14, and g(Xt) represent the
estimation of the observation using the predicted states. The
difference between the observation and the estimated observation
is considered in this function. This error affects the likelihood
function, and thus influences the prediction result.

In this research, several types of observation namely y and z
positions of the sensors, and the velocity of the sensors are
considered. The positions of the sensors are used in
determining the estimated observation using Eqs 4–8. Next,
the obtained estimated velocity is compared with the
measured velocity of the sensors and form the likelihood
function for this case. Since the likelihood function is
important in estimation, the continuous observations from the
sensors are desired to secure this function throughout the
estimation process. In the event of missing observation data,
the likelihood function is affected, and thus limits the ability of
the standard DA method. Therefore, the MIPF method is
introduced to perform estimation with new input data that
replace the missing data. The availability of the observations is
checked at each time instance. The missing data are handled by
introducing a random indicator variable, Rt,k (Abaza et al., 2014).

Rt,k{ 0: Observation ismissing from sensor k at time t
1: Observation is available from sensor k at time t

Consider the overall observation Wt,k comprises both available
and missing data from all sensors. The observation at time
instance t for all sensors k � 1. . .,nk with Rt,k � 0 is defined as
the missing information set Ξt, while the available information set
Ψt is the observation for all sensors k � 1,. . ., nk such that Rt,k � 1.

The introduction of the new data may affect the error
difference between the observation from the new data and the
estimated observation. Therefore, the SVSF method that is robust
and stable in the estimation process is introduced to handle this
problem. The combination of the MIPF and SVSF capable of
handling state estimation with missing information and error
differences problem.

During missing information, several random observations or
imputations is introduced in the estimation process. The
imputations are drawn from the proposal function (Chai and
Draxler, 2014)

Ξj
t ∼ φ(Ξt|Ψ0: t) �∑N

i�1
~ωi
tp(Ξt

∣∣∣∣∣ ~Xi

t)
for i � 1, . . . , N and j � 1, . . . ,M

(17)

where Ξt represent all missing observations at time t, Ψ0: t

represent all available observation from time 0 to time t,
{~ωi

t, ~X
i
t}
N

i �1 is the particle set with no regard of missing data, N
is the total number of particles and M is the total number of
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imputations. Next, the imputations are reformulated into the
imputed data sets of

Uj
t � {Ξj

t ,Ψ t} (18)

where Ξj
t represent all missing observation during jth imputation

and time t, and Ψ t represents all available observation at time t.
The imputed sets are used in determining the posterior
probability density that represent as

p(Xt|Ψ0: t) � ∫p(Xt|W0: t−1,Ψ t)p(Ξt|Ψ0: t)dΞt (19)

where Xt is the system state at time t, W0: t−1 is the complete
observation, Ξt and Ψ0: t are defined in Eq. 17, and Ψt is defined
in Eq. 18. Considering the Monte Carlo approximation, the
probability density can be written as

p(Xt|Ψ0: t) ≈ 1
M
∑M
j�1
p(Xt

∣∣∣∣W0: t−1, U
j
t) (20)

where M is defined in Eq. 17, Uj
t is defined in Eq. 18, and Xt,

Ψ0: t, and W0: t−1, are defined in Eq. 19. For each data set Uj
t , the

probability density from particle filtering is written as follows:

p(Xt

∣∣∣∣W0: t−1, U
j
t) ≈∑N

i�1
ωj,i
t δ(Xt −Xj,i

t ) (21)

where Xj,i
t is the system state at ith particle and jth imputation at

time instance t, ωj,i
t is the related weight. By substituting Eq. 21

into Eq. 20, the overall representation of the desired posterior
probability density is represented as

p(Xt|Ψ0: t) ≈ 1
M
∑M
j�1
∑N
i�1
ωj,i
t δ(Xt −Xj,i

t ) (22)

where Ψ0: t, M, N are defined in Eq. 17, Xt is defined in Eq. 19,
and Xj,i

t , ω
j,i
t are defined in Eq. 21. A smooth variable structure

filter (SVSF) is a sliding mode-based predictor-corrector
estimator. By having the proper representation of the
switching gain, the estimation is converged to be within the
boundary of the true state values. This ensures that the estimator
is stable and robust to modeling uncertainties and noise. The
width of the boundary is referring to the existence subspace that
represents the number of uncertainties present in the estimation
process. The uncertainties are associated with the inaccuracy of
the internal model of the filter and measurement model, that is
varies with time. The selection of the width is based on a prior
knowledge, since the parameter is not exactly known. During
estimation process with proper representation of the boundary,
the estimated states are forced to switch back and forth along the
true state trajectory by the SVSF gain. However, the switching
may cause for chattering effect and can be reduced by introducing
the smoothing subspace. For smoothing subspace that is bigger
than the existence subspace, the chattering effect is reduced.
While for smaller smoothing subspace compared to the
existence subspace, the chattering effect is still present (Feng
et al., 2011).

PROPOSED DATA ASSIMILATION
APPROACH

The algorithm of the MIPF–SVSF is the combination of the MIPF
and SVSF. The MIPF is functioning to handle the nonlinearity
and missing data problem, while the SVSF is used to deal the
noise problem. The algorithm of the MIPF–SVSF method is
presented as follows:

Initialization

x̂0, CovP0|0, CovR, CovQ,ω0, e0 (23)

where x̂0 is the initial state, CovP0|0 is the initial prediction error
covariance, CovQ is the system noise covariance matrix, CovR is
the measurement noise covariance matrix, andω0 is the initial
weight for particle filtering and e0 is the initial error difference
between the observation and the estimated measurement.

Prediction
Draw random imputation/observation from proposal function
(as in MIPF) from the previously available measurement

Ξj
t ∼ ϕ(Ξt|Γ0: t) �∑N

i�1
~ωi
tp(Ξt

∣∣∣∣~xi
t)for i � 1, . . . , N and

j � 1, . . .M (24)

Wj
t � {Γt,Ξj

t} (25)

where Ξt is the missing observation at time t, Γ0: t represent all
available observation from time 0 to time t, ~xi

t is the system state
during available observation, ~ωt is the weight for particle filtering
during available observation,Wj

t is the overall measurement that
includes the available observation and new imputation, N is the
number of particles, and M is the number of imputations.

- Prediction in SVSF involves producing the one step state
estimation and the covariance P for particles generation

x̂t|t−1 � f(x̂t−1|t−1, ut−1|t−1) (26)

At � zf

zx

∣∣∣∣∣x̂t|t−1ut−1|t−1 , (27)

CovPt|t−1 � At.CovPt−1|t−1.AT
t + CovQt|t−1 (28)

ζ̂ t|t−1 � g(x̂t|t−1) (29)

where ut−1|t−1 is the input, x̂t−1|t−1 is the previous system state,
x̂t|t−1 is the one step estimated state, ζ̂ t|t−1 is the estimated
measurement, CovPt−1|t−1 is the previous prediction error
covariance, CovPt|t−1 is the new prediction error covariance,
CovQt|t−1 is the system noise covariance, and A is the
linearized system model by using Jacobian as represented in
Eq. 27.

- Updating in SVSF involve updating the state estimation and
covariance P for particles generation
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ejW,t|t−1 � Wj
t − ζ̂ t|t−1 (30)

Bt � zg

zx

∣∣∣∣∣x̂t|t−1 , (31)

Kj
svsf,t � B−1

t .diag[(∣∣∣∣ejW,t|t−1
∣∣∣∣ + ϑ

∣∣∣∣ejW,t−1|t−1
∣∣∣∣).sat(Ψ−1ejW,t|t−1)]

· diag(ejW,t|t−1)−1
(32)

x̂j
t|t � x̂t|t−1 + Kj

svsf,te
j
W,t|t−1 (33)

CovPj
t|t � (I − Kj

svsf,tB)CovPj
t|t−1(I −Kj

svsf,tB)T
+Kj

svsf,tCovRt|t(Kj
svsf,t)T (34)

where ϑ is the convergence rate, ejW,t|t−1 is the error difference
between the overall observation (that includes the new
observation that replaces the missing observation and the
available observation) and the estimated measurement, Bt is
the linearized measurement model by using Jacobian as
represented in Eq. 31, Ψ is the smoothing boundary layer
vector, and Ψ−1 is the diagonal matrix constructed from nk
number of Ψ represented as

Ψ−1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Ψ1

0 0

0 1 0

0 0
1
Ψnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

the saturation function, sat(Ψ−1ejW,t|t−1) is defined by:

sat(Ψ−1ejW,t|t−1) �
⎧⎪⎪⎨⎪⎪⎩

1
ejWi ,t|t−1/Ψi

−1

, ejWi ,t|t−1/Ψi ≥ 1
,−1< ejWi ,t|t−1/Ψi < 1
ejWi ,t|t−1/Ψi ≤ − 1

⎫⎪⎪⎬⎪⎪⎭
for i � 1, . . . , nk

(36)

- GenerateN particles ofM imputation by using the previously
obtained estimated state, x̂j

t|t and prediction error
covariance, CovPj

t|t

xj,i
t ∼ q(x̂j

t|t, CovP
j
t|t)for i � 1, . . . , N and j � 1, . . . ,M (37)

Updating
Determine the important weight of the particles from the
previous weight, ωj,i

t−1 and the likelihood function that includes
the generated particles, xj,i

t and the overall measurement Wj
t .

ω̂j,i
t ∼ p(Wj

t |xj,i
t ).ωj,i

t−1 (38)

The important weight, ω̂j,i
t is normalized with the sum of particles

weight is equal to unity (∑N
i�1ω̂

j,i
t )

ωj,i
t � ω̂j,i

t∑N
i�1ω̂

j,i
t

(39)

Next, the effective sample size, Neff from the weights are
calculated, in order to measure the degeneracy problem. If the

Neff is smaller than the threshold (e.g.: Neff <0.5xN), severe
degeneracy problem might occur. So, the particles with small
weights are eliminated and concentrate on the particles with large
weights. The eliminated particles are replaced with the new set of
particles from resampling process and the weight is represented
as in Eq. 41.

Neff � 1∑N
i�1(ω̂j,i

t )2 (40)

ωj,i
t � 1/N (41)

where ω̂j,i
t is defined in Eq. 38, ωj,i

t is the new weight if the
degeneracy problem occur, N is defined in Eq. 14. By using the
generated particles and their associated weights, the estimated
states are represented as follows

x̂t|t � 1
M
∑M
j�1
∑N
i�1
ωj,i
t x

j,i
t (42)

where ωj,i
t is defined in Eqs 39, 41, xj,i

t is defined in Eq. 37. For the
purpose of next iteration in estimation, the updated measurement
estimate, ζ̂ t|t is determined and used to produce the updated
measurement error, ejW,t|t as shown in Eqs 43, 44 respectively.

ζ̂ t|t � g(x̂t|t) (43)

ejW,t|t � Wj
t − ζ̂ t|t (44)

where Wj
t is defined in Eq. 25, x̂t|t is defined in Eq. 42.

CONVERGENCE ANALYSIS

In order to perform the convergence analysis, the state-space
model of the system and observation, and the MIPF–SVSF are
reformulated into probability representation.

Probability Space Formulation
Let (Ω,F , P) be a probability space where F � B(Rnx ) is the
Borel set of Rnx , the Borel set is the standard set of all possible
probability events on Rnx . Two types of vector-valued stochastic
process namely system state, X � {Xt, t ∈ N} and observation,
W � {Wt, t ∈ N} are involved in this space. The system state, X is
a Markov process of initial distribution Xo∼µ and probability
transition kernel, K(xt|xt-1).

p(Xn
t ∈ Cn|Xt−1 � xt−1) � ∫

Cn

K(xn
t

∣∣∣∣xt−1)dxn
t , Cn ∈ (Rnx ) for

n � 1: ns (45)

where Xt � {X1
t , X

2
t , . . . , X

ns
t }, Xt−1 � {X1

t−1, X2
t−1, . . . , X

ns
t−1} , nx

is the dimension of the states, ns is the number of the states. Since
there are three states namely flow, stage, and cross section, the
current states are represented as xt � {Qt, At,Ht}, and the states
at previous time, xt−1 � {Qt−1, At−1, Ht−1}. The overall
observation is represented as Wt � W1

t , . . . ,W
nk
t for 1≤ k≤ nk

of nk sensors that is independent to each other and have marginal
distribution
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p(Wk
t ∈ D|Xt � xt) � ∫

D

p(wk
t

∣∣∣∣xt)dwk
t , D ∈ B(Rnw) (46)

where wk
t is the overall observation by kth sensor at time t, nw is

the dimension of the observation and xt is defined in Eq. 45. For
missing observation problem, consider the non-response vector-
valued stochastic process, R � {Rt, t ∈ N} with nw dimensional
vector. The availability of the observation is indicated using
rjt ∈ (0, 1) and introduced the following sets

ξt � {wk
t

∣∣∣∣rkt � 0 for 0≤ k≤ nw}
γt � {wk

t

∣∣∣∣rkt � 1 for 0≤ k≤ nw} (47)

where ξt is the missing observation at time t, γt is the available
observation at time t, rkt is the indicator for the availability of the
observation, nw and wk

t are defined in Eq. 46. The probability
density of the non-response mechanism that is corresponding to
the proposal function to draw imputation as in Eq. 17 is
represented as

p(ξt|r0: t, γ0: t) � p(Ξt ∈ dξt
∣∣∣∣R0: t � r0: t,Ψ0: t � γ0: t) (48)

where ξt is the missing observation at time t, γ0: t is the available
observation from time 0 to time t, and r0: t is the indicator for the
availability of the observation from time 0 to time t, Ξt and Ψ0: t

are defined in (17).

Probability Representation for State
Estimation
The estimation using MIPF–SVSF is represented by the posterior
probability density function that considers both the available
observation and the missing observation. The distribution of the
overall posterior probability density ψn

t and the probability
density of the states during available observation, ηnβ|α: β are
described as follows:

ψn
t ≜ p(Xn

t ∈ dxn
t

∣∣∣∣Ψ0: t � γ0: t, R0: t � r0: t) (49)

ηnβ|α: ς ≜ p(Xn
β ∈ dxn

β

∣∣∣∣∣Ψα � γα, . . . ,Ψς � γζ) (50)

where Ψα � γα, . . . ,Ψς � γς represent the available observation
from time α to time ς, β is the time for state during the available
observation,Ψ0: t is defined in Eq. 17, xt andXt are defined in Eq.
45, γ0: t, R0: t, and r0: t are defined in Eq. 48. For notational
convenience, the probability density ηnβ|α: ς is written as η

n
t|t. So, the

distribution of ψn
t and ηnt|t are related as follows:

ψn
t � ∫ ηnt|tp(ξt∣∣∣∣γ0: t)dξt (51)

where ηit|t is the probability density of the states at time t, ξt, and
γ0: t are defined in Eq. 48, ψn

t is defined in Eq. 49. By applying the
standard Bayesian filtering theory, the posterior probability
density of the available observation can be expressed as

ηnt|t �
p(wt|xt)ηnt|t−1∫p(wt|xt)ηnt|t−1

(52)

where ηnt|t−1 is the probability density of the states at time t-1, ηnt|t
is defined in Eq. 51, xt is defined in Eq. 45,wt is defined in Eq. 46.

By combining Eq. 51 with Eq. 52, the overall posterior
probability density can be reformulated into Eq. 53. This
equation shows the relationship between the probability
density during available observation, ηnt|t−1 and the overall
probability density, ψn

t .

ψn
t � ∫⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ p(wt|xt)ηnt|t−1∫p(wt|xt)ηnt|t−1n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠p(ξt∣∣∣∣γ0: t)dξt (53)

Since the missing observation is very much affecting the
probability distribution, the additional knowledge of this
problem is covered by introducing the empirical distribution,
(ηnt|t)N to (51) as a replacement to the true distribution of the
probability density, ηnt|t. So, the posterior probability density for
each state with N particles is represented as

(ψn)N � ∫(ηnt|t)Np(ξt∣∣∣∣γt)dξt (54)

where γt is the available observation at time t, (ηnt|t)N is the
probability density of each states during available observation, ξt
is defined in Eq. 48. The empirical distribution, (ηnt|t)N consists of
N particles that are distributed approximately according to ηnt|t.

(ηnt|t)N �∑N
i�1
ωi
tδ(xn

t )i (55)

given

ωi
t �

p(wt

∣∣∣∣(xt)i)∑N
i�1p(wt

∣∣∣∣(xt)i) (56)

(xt)i is the set of particles distributed approximately according to
ηt−1|t−1 for all state, given by (xt)i ∼ K(xt|(xt−1)i) as in the
standard bootstrap procedure. Next, the missing observation is
incorporated into Eq. 32 by applying naive Monte Carlo
approximation with ξjt ∼ p(ξt|γt) for 0≤ j≤M. The posterior
probability density of the desired states with N and M is
represented as

(ψn
t )N,M � (ηnt|t)N 1

M
∑M
j�1
δξjt (57)

where (ηnt|t)N is the posterior probability density for the related
states with N particles, ξjt is the missing observation at time t and
jth imputation, N andM are defined in Eq. 17. By referring to the
MIPF–SVSF algorithm, the relation between the approximated
distributions of the related states p(Xn

t |Ψ0: t) and the true density
can be analyzed through convergence analysis.

Part 1: Prediction Using SVSF
Consider the one step prediction error

~xt|t−1 � xt − x̂t|t−1 � f(xt−1) + υt−1 − f(x̂t−1|t−1) (58)
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where x̂t−1|t−1 is the estimate of xt−1 at time t − 1 with the initial
state, x̂t|t−1 is the one step prediction at time t − 1, xt and υt−1 are
defined in Eq. 1.

By using the Taylor series expansion around x̂t−1|t−1,f(xt−1) is
linearized as follows

f(xt−1) � f(x̂t−1|t−1) + At−1~xt−1|t−1 + ϕ~x2
t−1|t−1 (59)

where At−1 � zf(xt−1)
zxt−1 |xt−1�x̂t−1|t−1, and ϕ~x2

t−1|t−1 is the high order
terms of the Taylor series expansion

ϕ~x2
t−1|t−1 � Λt−1ℵ1,t−1Lt−1~xt−1|t−1 (60)

where Λt−1 is a problem dependent scaling matrix, Lt−1 is
introduce to provide extra degree of freedom to the filter,
ℵ1,t−1 is an unknown time-varying matrix for linearization
errors of the dynamical model that satisfies

ℵ1,t−1ℵT
1,t−1 ≤ I (61)

that gives

~xt|t−1 � (At−1 + Λt−1ℵ1,t−1Lt−1)~xt−1|t−1 + υt−1 (62)

where At−1 is defined in Eq. 59, υt−1 is defined in Eq. 1, Λt−1 is
defined in Eq. 60, ℵ1,t−1 and Lt−1 are defined in Eq. 60. Applying
the Taylor series expansion around x̂t|t−1 to the g(xt−1), the
innovation of the filter is represented as

~Wt � Wt − g(x̂t|t−1) � (Bt +Ωtℵ2,tLt)~xt|t−1 + εt (63)

where Bt � zg(xt)
zxt

|xt�x̂t|t,Ωt is a problem dependent scaling matrix,
Lt is introduce to provide extra degree of freedom to the filter,ℵ2,t

is an unknown time-varying matrix for linearization errors of the
dynamical model that satisfies ℵ2,tℵT

2,t ≤ I as in Eq. 61, ~xt|t−1 is
defined in Eq. 62, x̂t|t−1 is defined in Eq. 59, Wt and εt are defined
in Eq. 2. The filtering error is represented as

~xt|t � xt − x̂t|t � (I − Ksvsf,t(Bt + Ωtℵ2,tLt))~xt|t−1 − Ksvsf,tεt

(64)

whereKsvsf,t is the gain, x̂t|t is the estimated state from SVSF, xt is
defined in Eq. 45, x̂t|t−1 is defined in Eq. 59, Bt, Ωt, ℵ2,t, Lt are
defined in Eq. 63, εt is defined in Eq. 2,

Theorem 1: The one step prediction error covariance, CovPt|t−1
is given by

CovPt|t−1 � (At−1

+ Λt−1ℵ1,t−1Lt−1)CovPt−1|t−1(At−1 + Λt−1ℵ1,t−1Lt−1)T
+ CovQt−1

(65)

where CovPt−1|t−1 is the previous prediction covariance, CovQt−1
is defined in Eq. 23, At−1 is defined in Eq. 59, υt−1 is defined in
Eq. 1, Λt−1 is defined in Eq. 60, ℵ1,t−1, and Lt−1 are defined in
Eq. 60

Theorem 2: The filtering error covariance CovPt|t is given by

CovPt|t � (I − (Ksvsf,t(Bt + Ωtℵ2,tLt)))CovPt|t−1

× (I − (Ksvsf,t(Bt +Ωtℵ2,tLt)))T
+ (Ksvsf,t(CovRt)KT

svsf,t) (66)

where E{εtεTt } � CovRt is defined in Eq. 23, Ksvsf,t is defined in
Eq. 64, Bt, Ωt, ℵ2,t, Lt are defined in Eq. 63.

Lemma 1: Given matrices A, H, E, and F with appropriate
dimensions such that FFT ≤ I. Let X be a symmetric positive
definite matrix and γ be an arbitrary positive constant such that
γ−1I − EXET > 0. Then the following inequality holds

(A +HFE)X(A +HFE)T ≤A(X−1 − γETE)AT + γ−1HHT

(67)

Theorem 3: Consider Theorem 1 and Theorem 2 and assume
ℵ1,t−1ℵT

1,t−1 ≤ I and ℵ2,tℵT
2,t ≤ I as in Eqs 60, 62 are true. Let

γ1,t−1, γ2,t be positive scalars. The upper bound for the one step
prediction error covariance matrix and filtering error covariance
matrix can be represented by the following Riccati-like difference
equations using Lemma 1:

Σt|t−1 � At−1(Σ−1
t−1|t−1 − γ−11,t−1Lt−1LT

t−1)−1AT
t−1 + γ−11,t−1Λt−1ΛT

t−1

+ CovQt−1 (68)

Σt|t � (I − (Ks,tBt))(∑−1
t|t−1 − γ−12,tLtL

T
t )−1(I − (Ks,tBt))T

+ γ−12,tKs,tΩtΩ
T
t K

T
s,t + (Ks,t(CovRt)KT

s,t) (69)

whereKs,t is the gain likeKsvsf,t in Eq. 64,CovQt−1 andCovRt are
defined in Eq. 23, At−1 is defined in Eq. 59, Λt−1 is defined in Eq.
60, Lt−1 is defined in Eq. 60, Bt, Ωt, ℵ2,t, Lt are defined in Eq. 63,
γ1,t−1, γ2,t are positive scalars.

With initial condition Σ0|0 � CovP0|0 > 0 have positive definite
solutions Σt|t−1 and Σt|t such that for all 0< t<Nt the following
two constraints

γ−11,t−1I − Lt−1Σt−1|t−1LT
t−1 > 0 (70)

γ−12,tI − LtΣt|t−1LT
t > 0 (71)

are satisfied.
The filter gain for the upper bound Ks,t is referring to the

Ksvsf,t in Eq. 32 and minimizes the upper bound so that

CovPt|t ≤Σt|t (72)

Lemma 2: For 0< k<N, suppose that X � XT > 0, Sk(X) �
STk(X) ∈ Rnxn and Hk(X) � HT

k(X) ∈ Rnxn. If

Sk(Y)≥ Sk(X),∀X≤Y � YT (73)

and

Hk(Y)≥ Sk(Y) (74)

Then the solutions for Mk andNk to the following difference
equations are
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Mk+1 � Sk(Mk), Nk+1 � Hk(Nk), Mo � N0 > 0 (75)

Satisfy. Mk ≤Nk

Proof. By referring to Lemma 2, rewrite the error covariance
matrices as the function of CovPt|t−1.

CovPt|t−1(CovPt−1|t−1) � (At−1 + Λt−1ℵ1,t−1Lt−1)
CovPt−1|t−1(At−1 + Λt−1ℵ1,t−1Lt−1)T + CovQt−1 (76)

CovPt|t(CovPt|t−1) � (I − (Ksvsf,t(Bt + Ωtℵ2,tLt))).CovPt|t−1

× (I − (Ksvsf,t(Bt +Ωtℵ2,tLt)))T
+ (Ksvsf,t(CovRt)KT

svsf,t)
(77)

where CovPt−1|t−1 is defined in Eq. 65, CovQt−1 , CovRt are
defined in Eq. 23, At−1 is defined in Eq. 59, υt−1 is defined in Eq.
1), Λt−1,ℵ1,t−1, and Lt−1 are defined in Eq. 60, Ksvsf,t is defined in
Eq. 56, Bt, Ωt, ℵ2,t, Lt are defined in Eq. 63.

Next, rewrite the upper bound obtained in Eq. 67 and Eq. 68
as the function of Σt−1|t−1 and Σt|t−1

Σt|t−1(Σt−1|t−1) � At−1(Σ−1
t−1|t−1 − γ−11,t−1Lt−1LT

t−1)−1AT
t−1

+ γ−11,t−1Λt−1ΛT
t−1 + CovQt−1 (78)

Σt|t(Σt|t−1) � (I − (Ks,tBt))(Σ−1
t|t−1 − γ−12,tLtL

T
t )−1(I − (Ks,tBt))T

+ γ−12,tKs,tΩtΩ
T
t K

T
s,t + (Ks,t(CovRt)KT

s,t)
(79)

whereKs,t is defined in Eq. 61, CovQt−1 and CovRt are defined in
Eq. 23, At−1 is defined in Eq. 59, Λt−1, Lt−1 is defined in Eq. 60,
Bt, Ωt, ℵ2,t, Lt are defined in Eq. 63, γ1,t−1, γ2,t are positive
scalars.

Consider Eqs 75–78, the error covariance matrices and the
upper bound satisfy condition Eq. 72, 73 in Lemma 2.

CovPt|t(CovPt|t−1)≥CovPt|t−1(CovPt−1|t−1) (80)

∑
t|t
(Σt|t−1)≥CovPt|t(CovPt|t−1) (81)

which gives CovPt|t ≤Σt|t.

Part 2: Prediction Using MIPF
Consider: if (μN)∞N�1 is a sequence of random probability
measures, then μN converges to μ ∈ B(Rnx ) if for any
continuous bounded function φ ∈ B(Rnx)

lim
N→∞

E[((μN,φ) − (μ,φ))2] � 0

Assumption. The likelihood function p(Wt|Xt) is a bounded
function in argument and represented as π <∞.

Lemma 3: For any φ ∈ B(Rnx ) with random variables {xi
t}Ni�1

obtained from states, x̂t|t and prediction error covariance
matrices, CovPt|t from SVSF as in Eq. 37.

E

∣∣∣∣∣∣∣((ηnt−1|t−1)N,φ) − (ηnt−1|t−1,φ)
∣∣∣∣∣∣∣4 � 1

N4 E
⎡⎣∑N
i�1
(f(xi

t) − E(f(xi
t)))⎤⎦

4

≤
2

N2 E[f(xi
t) − E(f(xi

t))]4 ≤Ct−1|t−1

****φ****2
N

for n � 1: ns (82)

Then, for any φ ∈ B(Rnx )

E

∣∣∣∣∣∣∣((ηnt|t−1)N,φ) − (ηnt|t−1,φ)
∣∣∣∣∣∣∣2 � Cn

t|t−1

****φ****2
N

(83)

where ηnt−1|t−1 is the probability density of the random variables,
ηnt|t−1 is the probability density of the one step state estimate,Cn

t|t−1
and Cn

t−1|t−1 are the constant, x
i
t is the particles obtained, andns is

the number of the states; N is described in Eq. 37.

Proof. Consider∣∣∣∣∣∣∣((ηnt|t−1)N,φ) − (ηnt|t−1,φ)
∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣((ηnt|t−1)N,φ) − ((ηnt−1|t−1)N,Kφ)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣((ηnt−1|t−1)N,Kφ)

−(ηnt−1|t−1, Kφ)∣∣∣∣∣∣∣ (84)

Let Gt−1 be the σ − field generated by {xi
t−1}Ni�1, then

E[(ηNt|t−1,φ)∣∣∣∣∣Gt−1] � (ηNt−1|t−1, Kφ) (85)

and, as Kφ≤ φ

E[(((ηnt|t−1)N,φ) − E(((ηnt|t−1)N,Kφ))∣∣∣∣∣∣∣Gt−1)2∣∣∣∣∣∣∣Gt−1]≤
****φ****2
N

(86)

Using Minkowski’s inequality

E[(((ηnt|t−1)N,φ) − (ηnt|t−1,φ))2]
1
2

≤
------
Cn

t−1|t−1
√ ‖φ‖--

N
√

+ ‖φ‖--
N

√ ≤Cn
t|t−1

****φ****--
N

√ (87)

where Cn
t|t−1 � (

------
Cn
t−1|t−1

√
+ 1)2.

Part 3: Updating Using MIPF

Lemma 4. For any φ ∈ B(Rnx)

E[((ηnt|t−1)N,φ) − (ηnt|t−1,φ)]2 ≤Cn
t|t−1

****φ****2
N

(88)

whereCn
t|t−1 � (

------
Cn

t−1|t−1
√

+ 1)2
Then for any φ ∈ B(Rnx)

E[((~ηnt|t)N,φ) − (ηnt|t,φ)]2 � ~C
n

t|t−1

****φ****2
N

(89)

where ηnt|t−1 is the probability density of the one step state
estimate, ~ηnt|t is the probability density of the state without
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consideration of missing data, Cn
t|t−1 and ~C

n
t|t−1 are the constant, N

is described in Eq. 37.
Proof: Consider

((~ηnt|t)N,φ) − (ηnt|t,φ) � ((η
n
t|t−1)N, πφ)

((ηnt|t−1)N, π) − (ηnt|t−1, πφ)(ηnt|t−1, π) (90)

For the first part of Eq. 90∣∣∣∣∣∣∣∣∣∣∣∣∣
((ηnt|t−1)N, πφ)
((ηnt|t−1)N, π) −

((ηnt|t−1)N, πφ)
(ηnt|t−1, π)

∣∣∣∣∣∣∣∣∣∣∣∣∣≤
‖φ‖(ηnt|t−1, π)

∣∣∣∣∣∣∣(ηnt|t−1, π)
− ((ηnt|t−1)N, π)∣∣∣∣∣∣∣ (91)

Using Minkowski’s inequality

E[(((~ηnt|t)N,φ) − (ηnt|t,φ))2]
1
2

≤

****φ****
((ηnt|t−1)N, π)E[((η

n
t|t−1, πφ)

−((ηnt|t−1)N, π))2]
1
2

+
E[(((ηnt|t−1)N, πφ) − (ηnt|t−1, πφ))2]

1
2

((ηnt|t−1)N, π)
≤

2
-----
Cn

t|t−1
√

‖π‖
((ηnt|t−1)N, π)

****φ****--
N

√ (92)

Part 4: Updating With New Imputation Using MIPF

Lemma 5. For any φ ∈ B(Rnx)

E[((~ηnt|t)N,φ) − (ηnt|t,φ)]2 ≤ ~C
n

t|t−1

****φ****2
N

(93)

where ~C
n
t|t−1 � ( 2

----
Cn
t|t−1

√
π

((ηnt|t−1)N,π)
)2. Then, for any φ ∈ B(Rnx) that

includes new imputation ϱ ∈ B(Rnz )

E⎡⎢⎢⎣⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠ − (Ψn
t|t,φ)⎤⎥⎥⎦

2

� ~f
n

t|t

****φ****2
MN

(94)

where ~ηnt|t is the probability density of the state without the
consideration of missing data, ~Ψ

n
t|t is the probability density of

the state with the consideration of missing data, and~C
n
t|t−1 and ~f

n

t|t
are the constant; M and N are described in Eq. 37.
Proof: Consider

((~ηnt|t)NHM
t ,φ) − (ηnt|tHt,φ)

�
((ηnt|t−1)NHM

t , ϱπφ)
((ηnt|t−1)NHM

t , ϱπ) −
((ηnt|t−1)NHM

t , ϱπφ)
(ηnt|t−1Ht, ϱπ)

+
((ηnt|t−1)NHM

t , ϱπφ)
(ηnt|t−1Ht, ϱπ) − (ηnt|t−1Ht, ϱπφ)(ηnt|t−1Ht, ϱπ) (95)

For the first part of Eq. 95∣∣∣∣∣∣∣∣∣∣∣∣∣
((ηnt|t−1)NHM

t , ϱπφ)
((ηnt|t−1)NHM

t , ϱπ) −
((ηnt|t−1)NHM

t , ϱπφ)
(ηnt|t−1Ht, ϱπ)

∣∣∣∣∣∣∣∣∣∣∣∣∣≤
****φ****(ηnt|t−1Ht, ϱπ)

∣∣∣∣∣∣∣
× (ηnt|t−1Ht, ϱπ) − ((ηnt|t−1)NHM

t , ϱπ)∣∣∣∣∣∣∣
(96)

For the second part of Eq. 94 that refer to Eq. 89∣∣∣∣∣∣∣∣∣∣∣∣∣
((ηnt|t−1)NHM

t , ϱπφ)
(ηnt|t−1Ht, ϱπ) − (ηnt|t−1Ht, ϱπφ)(ηnt|t−1Ht, ϱπ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

� ~f
n

t|t−1

****φ****2
MN

(97)

Using Minkowski’s inequality

E[(((~ηnt|t)NHM
t , φ) − (ηnt|tHt,φ))2]

1
2

≤
2
-----
~f
n

t|t−1
√

‖ϱπ‖
(ηnt|t−1Ht, ϱπ)

****φ****----
MN

√

(98)

Part 5: Resampling Using MIPF

Lemma 6. For any φ ∈ B(Rnx) and ϱ ∈ B(Rnz )

E

∣∣∣∣∣∣∣∣∣∣⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠ − (Ψn
t|t,φ)

∣∣∣∣∣∣∣∣∣∣
2

≤ ~f
n

t|t

****φ****2
MN

with ~f
n

t|t

� ⎛⎜⎜⎝ 2
-----
~f
n

t|t−1
√

ϱπ
(ηnt|t−1Ht, ϱπ)⎞⎟⎟⎠

2

(99)

There exists a constant fn
t|t, such that for any φ ∈ B(Rnx )

and ϱ ∈ B(Rnz )

E

∣∣∣∣∣∣∣((Ψn
t|t)N,M

,φ) − (Ψn
t|t,φ)∣∣∣∣∣∣∣2 � fn

t|t

****φ****2
MN

(100)

where ~Ψ
n
t|t is the probability density of the state with the

consideration of missing data, Ψn
t|t is the posterior probability

density of the states, and ~C
n
t|t−1 and ~f

n

t|t are the constant; M and N
are described in Eq. 37.

Proof. Consider the following
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((Ψn
t|t)N,M

,φ) − (Ψn
t|t,φ) � ((Ψn

t|t)N,M
,φ) −⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠
+⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠ − (Ψn
t|t,φ)

(101)

By using Minkowski’s inequality

E[(((Ψn
t|t)N,M

,φ) − (Ψn
t|t,φ))2]

1
2

≤E⎡⎢⎢⎢⎢⎣⎛⎝((Ψn
t|t)N,M

,φ) −⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠⎞⎠2⎤⎥⎥⎥⎥⎦
1
2

+E⎡⎢⎢⎢⎢⎣⎛⎝⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠ − (Ψn
t|t,φ)⎞⎠

2⎤⎥⎥⎥⎥⎦
1
2

(102)

Let Ft−1 be the σ − field generated by {~xi
t−1}Ni�1, then

E[((Ψn
t|t)N,M

,φ)∣∣∣∣∣∣Ft−1] � ⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠ (103)

and

E⎡⎢⎢⎢⎢⎣⎛⎝((Ψn
t|t)N,M

,φ) −⎛⎝( ~Ψn

t|t)
N,M

,φ⎞⎠⎞⎠2∣∣∣∣∣∣∣∣∣∣Ft−1⎤⎥⎥⎥⎥⎦ � F

MN

****φ****2
(104)

That gives

E[(((Ψn
t|t)N,M

,φ) − (Ψn
t|t,φ))2]

1
2

≤

--
F

√ + ~f
n

t|t----
MN

√ ****φ**** (105)

Theorem 4For all t> 0 there existfn
t|t that is independent of N but

being influenced by M for any bounded function, φ ∈ B(Rnx )

E[(((Ψn
t|t)N,M

,φ) − (Ψn
t|t,φ))2]≤fn

t|t

****φ****2
MN

with fn
t|t � ( --F√ + ~f

n

t|t )2
(106)

E[(((Ψn
t|t)N,M

,φ) − (Ψn
t|t ,φ))2] ≤ 1

M2N2
E⎡⎢⎢⎣∑M

j�1
∑N
i�1
(f(xj,i

t ) − E(f(xj,i
t )))⎤⎥⎥⎦

2

(107)

where Ψn
t|t is the posterior probability density of the states, fn

t|t is
the constant, M and N are described in Eq. 37, xj,it is particles
generated as in Eq. 37. The number of imputations, M for missing
observation data is related to the number of particles, N since at
each imputation contain several particles for estimation. To
ensure the accuracy of estimation, the number of imputation
M and the number of particles N are considered based on the
dimension of the missing observation data, nz and dimension of
the states, nx respectively. Besides that, the number of M and N
also are influenced by the Gaussian noise of the measurement
error that affects the likelihood function as in Eq. 16. Large error
difference in the likelihood function requires high number of M
and N to help for the convergence of the filter to the true state. By

having proposed states and error covariance matrices to generate
the particles as in Eq. 37 that are determined through considering
the error difference of the observation and estimated
measurement, the distribution of the particles can be limit to
the relevant area only. Therefore, the number of M and N needed
by this method will be less than the particle filtering method that
randomly generated particles without reference.

RESULTS AND DISCUSSION

In this section, the estimation of the river flow and stage, and the
velocity of the last drifter are presented. Consider the
measurements are suffering from the missing data that affect
the estimation process. The MIPF–SVSF is proposed to perform
the state estimation by applying several numbers of particles and
imputations as described in the previous section. The
performance of this method is evaluated by finding the root
mean square error (RMSE), standard deviation (SD) (Chai and
Draxler, 2014), mean absolute error (MAE), and computational
time (Liang et al., 2012) between the measured velocity and the
estimated velocity. The RMSE, SD,MAE, and computational time
of the MIPF–SVSF are compared with the same parameters from
forward simulation, EKF during complete data, PF during
complete data, and MIPF.

Description of the Estimation Process
In this research, the measurements from the drifters (Lee et al.,
2011) are used in the estimation of the flow, stage, and cross
section that are later used to estimate the velocity of the sixth
sensor. The estimated sensor velocity is proportional to the
velocity of the river flow. During estimation process, the river
system is discretized into 60 cells with 5 m interval. The temporal
step size is chosen as 1 s. Since the data about the bottom of the
river is unavailable, the bed slope is considered as zero.

The estimation is carried out by combining the system and the
observation. During no missing data, the estimation is carried out
by the PF–SVSF. The MIPF–SVSF is proposed for the state
estimation with missing data problem. Consider the
observation is suffering from three types of missing data
namely missing velocity data, missing position data, and
missing combination of velocity and position data at the same
time. Whereby each case has 10, 20, and 30% missing data
(Ugryumova et al., 2015). During estimation, the missing data
is replaced by several number of imputations. The imputations
are generated based on the previously available data. For each
imputation, the error difference between the estimated
measurement by the SVSF, and the observation from the
imputation is calculated. This error is bounded by using the
smoothing boundary layer vector. The bounded error and the
convergence rate are used in producing the SVSF gain to obtain
the new state value.

Next, the new state by the SVSF with their covariance are used
to generate several particles. The particles and the observation
from the imputation is combined to form the likelihood function.
From the likelihood function, the important weight of the
particles is obtained. The particles and their weight are used to
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produce estimated state that consists of the flow, stage, and cross-
sectional area. The number of estimated states is depending on
the number of imputations. The mean of these states is the
desired new estimated state by the proposed method. The
estimation process is repeated for 400 s with the error
difference between the current result and the observation is
use in the next estimation cycle. Since the proposed method
includes the convergence rate and smoothing boundary layer
vector, the error difference between the estimated velocity and the
observation is reduced. By reducing the error, the MIPF–SVSF
will have less computational time compared to the MIPF.

Discussion
The estimation process by the DA method includes the merging
of the system and the observation. Three types of missing data
cases are considered in this research as mentioned earlier. For
each case, several numbers of imputations, namely 5, 10, 15, and
20 are injected during estimation with 50 particles. The same
number of particles are applied for the whole estimation process
due to the good estimation result by the PF using these particles
during no missing data. Figure 1 shows the estimated flow and
stage by forward simulation, the EKF (no missing data), MIPF
and MIPF–SVSF for 30% missing velocity data. The overall flow
estimation by the MIPF is smaller than the EKF and forward
simulation, while the overall estimation by the MIPF–SVSF is
smaller than the other methods. Besides that, the MIPF also
produce estimated stage that is bigger than the EKF and the
forward simulation. However, the estimated stage by the
MIPF–SVSF is bigger than the MIPF. The state estimation by

the proposed method seems to be reasonable. Therefore, the
performance of the method is evaluated by finding the velocity of
the final drifter and compared with the measurement. The
velocity of the final drifter is obtained by combining the
estimated flow and cross-sectional area at the corresponding
cell. Figure 2 shows the velocity of the final drifter predicted
by the forward simulation, EKF (no missing data), MIPF, and
MIPF–SVSF. The figure shows that the proposed method helps
the estimation to converge to the desired value. This can be seen
by smaller difference between the estimated and the true state,
compared to the other methods.

For further analysis and comparison of the performance of the
MIPF–SVSF, the RMSE, the SD, theMAE, and the computational
time are determined as in Table 1, Table 2 and Table 3. The
performance of the MIPF–SVSF is compared with the MIPF and
the PF and the EKF from Table 4. Since the proposed method is
the upgraded version of the MIPF, the performance of the MIPF
is first examined. By considering all missing data cases, the MIPF
is able to produce RMSE, SD, and MAE that is close to the
estimation result by the PF during complete data. These show that
the external input data successfully fill in the missing part. Besides
that, the combination of the SVSF with the MIPF improves the
estimation result through smaller RMSE, SD, and MAE
compared to the MIPF for all missing data cases. This
indicates that the SVSF method successfully bound the error
difference in the estimation process. The bounded error also helps
to reduce the MIPF–SVSF’s computational time compared to the
MIPF through the generation of gain that brought the estimation
velocity closer to the observation. The results are represented by

FIGURE 1 | Estimated flow and stage at the 30th cell, forward simulation, EKF during no missing data, MIPF with 30% missing data, and MIPF–SVSF with 30%
missing data.
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FIGURE 2 | Estimated velocity of the final drifter using forward simulation, EKF during no missing data, MIPF with 30% missing data, and MIPF-SVSF with 30%
missing data.

TABLE 1 | Performance of the MIPF and MIPF–SVSF during missing velocity data.

Method N M Missing velocity data

10% 20% 30%

RMSE SD MAE Time RMSE SD MAE Time RMSE SD MAE Time

MIPF 50 5 0.500 0.437 0.344 59.158 0.500 0.439 0.351 60.564 0.507 0.444 0.351 61.945
10 0.502 0.434 0.345 61.363 0.498 0.437 0.349 63.936 0.508 0.440 0.348 66.452
15 0.506 0.439 0.348 62.623 0.500 0.441 0.347 67.522 0.507 0.441 0.346 71.077
20 0.506 0.436 0.351 64.263 0.503 0.438 0.346 70.894 0.502 0.438 0.346 75.787

MIPF-SVSF 50 5 0.434 0.373 0.322 6.809 0.445 0.376 0.338 8.047 0.443 0.371 0.334 8.890
10 0.437 0.376 0.333 8.233 0.443 0.376 0.333 10.892 0.451 0.379 0.332 13.102
15 0.435 0.372 0.329 9.716 0.434 0.365 0.327 13.703 0.445 0.379 0.333 16.891
20 0.435 0.375 0.330 11.221 0.438 0.372 0.329 16.682 0.442 0.373 0.331 20.699

Bold values represents the smallest value among variables (RMSE SD MAE Time).

TABLE 2 | The performance of the MIPF and MIPF–SVSF during missing position data.

Method N M Missing position data

10% 20% 30%

RMSE SD MAE Time RMSE SD MAE Time RMSE SD MAE Time

MIPF 50 5 0.493 0.432 0.347 64.212 0.497 0.432 0.347 66.177 0.501 0.435 0.348 67.914
10 0.500 0.432 0.346 65.994 0.502 0.434 0.348 70.1.1 0.502 0.433 0.345 73.766
15 0.503 0.434 0.344 68.312 0.503 0.435 0.344 74.529 0.503 0.435 0.345 79.754
20 0.502 0.435 0.347 70.403 0.502 0.433 0.348 77.947 0.503 0.434 0.348 84.730

MIPF–SVSF 50 5 0.439 0.362 0.338 7.162 0.441 0.373 0.333 8.494 0.441 0.371 0.336 9.155
10 0.440 0.369 0.335 8.778 0.438 0.372 0.333 10.972 0.441 0.376 0.333 13.482
15 0.442 0.372 0.333 10.239 0.442 0.373 0.333 13.979 0.440 0.366 0.336 17.643
20 0.441 0.382 0.334 11.705 0.440 0.370 0.334 17.022 0.441 0.370 0.336 21.743

Bold values represents the smallest value among variables (RMSE SD MAE Time).
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bold numbers in Tables 1–3. The selection is made based on the
smallest value among variables.

By using 50 particles with different number of imputations, the
performance of state estimation by MIPF–SVSF during missing
velocity data is shown in Table 1. The result shows that the
increasing number of imputations will reduce the RMSE, SD, and
MAE. However, too many imputations may diverge the
estimation from the true value. This can be seen through the
sudden increase of RMSE, SD, and MAE after reduction. Besides
that, the number of imputations also related to the percentage of
missing data. Whereby the higher percentage of missing
observation data require higher number of imputations. The
same response is shown during the state estimation with
missing position data and missing combination of velocity and
position data as shown by Tables 2, 3, respectively. The
increasing number of imputations reduces the RMSE, SD, and
MAE, and the suitable number of imputations is selected before
the divergence of the estimation occurred. For different
percentages of missing data, the appropriate number of
imputations is considered based on the response from RMSE,
SD, and MAE.

In this research, the number of particles is fixed to 50 particles
throughout the estimation process. Based on the result
represented by bold numbers in Tables 1–3, the MIPF–SVSF
has less RMSE, SD, MAE, and computational time compared to
the MIPF for all missing data cases. The percentage improvement
of the proposed method compared to MIPF in terms of RMSE is
between 12 and 13.5%, SD is between 14 and 15%, and MAE is
between 2 and 7%. While for the computational time, the
percentage of reduction is between 73 and 90%. Therefore, the
proposed method still can have small RMSE, SD, MAE and
computational time under lower number of particles. Since the
number of particles and imputations are related, a smaller

number of imputations for MIPF–SVSF compared to the
MIPF is enough for good estimation performance.

CONCLUSION

The MIPF–SVSF is the extension of the MIPF method with the
addition of the SVSF.Theproposedmethod introduces several numbers
of imputation based on the previously available data to replace the
missing data. There are three types of missing data considered in the
research, namely, missing velocity data, missing position data, and the
missing combination of velocity and position. The convergence analysis
of this method shows that the number of particles and imputations
depends on the likelihood function that represents error difference
between the estimatedobservation and the imputationdata that replaces
the missing data. Large error difference requires high number of
particles and imputation to converge the estimation to the true state.
The SVSF reduces the error difference through the introduction of
convergence rate and the smoothing boundary layer vector. These
variables are used to generate the particles and theirweight and form the
estimated state. The performance comparison between MIPF–SVSF
and MIPF shows that MIPF–SVSF has better performance than the
MIPF in terms of RMSE, SD, MAE and computational time. Besides
that, different missing data cases with different percentages of missing
data require different combination of particles and imputations. The
MIPF–SVSF requires smaller combination of particles and imputation
compared to the MIPF for all missing data cases.
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TABLE 3 | The performance of the MIPF and MIPF-SVSF during missing combination of position and velocity data.

Method N M Missing combination of velocity and position data

10% 20% 30%

RMSE SD MAE Time RMSE SD MAE Time RMSE SD MAE Time

MIPF 50 5 0.502 0.436 0.346 65.196 0.504 0.436 0.343 66.356 0.502 0.438 0.351 67.764
10 0.502 0.435 0.347 67.258 0.502 0.436 0.348 70.214 0.504 0.435 0.346 73.130
15 0.502 0.436 0.345 68.972 0.501 0.433 0.346 75.441 0.501 0.433 0.348 76.950
20 0.501 0.437 0.349 71.112 0.497 0.435 0.347 77.984 0.499 0.438 0.352 82.081

MIPF–SVSF 50 5 0.438 0.372 0.330 6.866 0.443 0.374 0.337 7.960 0.446 0.384 0.334 8.594
10 0.441 0.378 0.332 8.231 0.441 0.374 0.333 10.821 0.442 0.374 0.335 12.233
15 0.444 0.377 0.337 9.647 0.438 0.371 0.331 13.794 0.448 0.379 0.334 15.838
20 0.442 0.374 0.336 11.175 0.439 0.376 0.330 16.579 0.436 0.375 0.324 19.397

Bold values represents the smallest value among variables (RMSE SD MAE Time).

TABLE 4 | The performance of the Forward simulation, EKF, and PF during
complete data.

Method N RMSE SD MAE Time

Forward sim — 1.6778 1.054 1.417 1.511
EKF — 0.657 0.526 0.480 2.735
PF 50 0.504 0.436 0.339 58.272
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